
IMPLICIT HANDLING OF GEOMETRIC RELATIONS
IN AN EXISTING MODELER

S. BELBLIDIA, E. ALBY
MAP-CRAI CNRS Research Unit – School of Architecture of Nancy
2 rue Bastien Lepage, 54000 Nancy, France.
{belblidia,alby}@crai.archi.fr

Abstract. This paper presents a constraint-based modeling system,
integrated into a widely used CAD modeler. Using a notification
mechanism, the system records the precision functions called by the
user in order to maintain geometric relations between points locations
and source objects. These relations are stored in a directed graph
which allows an automatic update of the model.

1. Introduction

The construction of constrained drawings is a widely discussed research
topic, particularly in the field of architectural design. The related works aim
to integrate into the drawing the intentions of the designer concerning layout
and dimensioning, in order to facilitate further modifications.

Our objective is to develop a simple and efficient constraint-based
modeling system, which helps produce and modify sketches during the
design process, by migrating some of the designer intentions into the model.
We have focused on two conditions that the system must satisfy: 1) the
constraint setting must be intuitive without any extra manipulation from the
designer, 2) the model modification must be efficient enough not to generate
conflict situations that require the user intervention.

In order to be actually used in the design process, our system is
integrated into an existing CAD modeler1 which includes – like most
modelers – drawing aids, also called snap modes, to acquire precise points
relative to existing objects (midpoint, center, intersection, etc.). Our system
records the user calls to these drawing aids to create geometric relations and
to gradually build a relational graph that links the objects of the drawing.

1 AutoCAD (Autodesk): http://www.autocad.com

2 S. BELBLIDIA AND E. ALBY

Consequently, when modifications occur in the drawing, a top-down
traversal of this graph allows the model update.

2. Related works and tools

Many research works have been carried out to provide modeling tools to
create and manage models which can be modified interactively once they
have been created. These contributions include very different approaches
like parametric modeling, shape grammars or constrained-based modeling.

According to the review of these approaches made by J. Monedero
(2000), our work can be classified under the heading of “history-based
modeling” or “constructive parametric design”. Unlike constraint-based
systems, it does not use global solving algorithms nor evaluate if the model
is underconstrained or overconstrained.

Rather than satisfying constraints on a set of parameters, our system
maintains relations between points and source objects. The model also
contains free points – at least one, the first created – which allow the user to
introduce changes during the design activity.

Other research works have previously used similar point-based graphs
(Martini, 1995) to develop prototypes such as the ReDRAW project
(Kolarevic, 1997) or the CadLab Java applet (Medjdoub, 1999).

Besides, some commercial software like Cabri Géomètre2 (dedicated to
the interactive learning of geometry) and Solid Edge3 modeler, have
capabilities to maintain relations between objects by using a set of snap
modes or geometric functions.

The history-based modeling system we present here is similar to these
last tools in regard to the interactivity and functionalities even if it has major
differences in some situations like object removal4 or model modification5

3. Implicit setting of geometric relations

Each time the user requests one of the available snap modes, the modeler
computes a point position using one or two existing entities. This can be
interpreted (if desired by the user) as a design intention and thus a new
geometric relation is created without any manipulation from the user.

2 Cabri Géomètre (Cabrilog) : http://www.cabri.com
3 SolidEdge (EDS): http://www.solidedge.com
4 In Cabri Géomètre, when an object is removed, all dependent objects are erased. In
our system, objects are kept but only relations are removed.
5 Solid Edge considers the geometric relations as bidirectional (that is the source
object reacts to the target object). That sometimes generates unpredictable results.

IMPLICIT HANDLING OF GEOMETRIC RELATIONS 3

So, during the construction process, the system builds, beside the
modeler database, a custom graph of relations between point locations and
graphic entities.
Consequently, when a point position can be the result of several
construction methods, the user must choose the most relevant snap mode
which matches its design intention and ensures the point will be updated in
an adequate way. In a sense, the choices made by the user have more
consequences than in a standard modeler.
In Figure 1, when point A is moved, point F is updated to different positions
(b to d) according to the snap mode initially used (a).

A

F

BC

D

E

A

F

BC

D

E

A

F
BC

D

E

A

F

BC

D

E

a. Initial state b. F midpoint of AB c. EF perpendicular to
AB

d. EF parallel to DA

Figure 1. Different updates of a given point according to its construction method

4. Creation and management of a relational graph

Constrained points depend on source entities to which they are attached by
“relation links”. The points are also used in the geometric definition of
target entities to which they are connected by “construction links”. The
constrained point is consequently the central object in the system. Its basic
behavior is to react to the changes of its source entity, to re-compute its
position accordingly and to transmit this new location to the target entity
(Figure 2).

source : standard entity Constrained Point target : custom entityrelation link construction link

Figure 2. Basic dependency relation

The links are bi-directional. From left to right, they follow the creation
and propagation order whereas the opposite direction figures the
dependency.

4 S. BELBLIDIA AND E. ALBY

4.1. DATA MODEL

The data model relies on two main object classes: the points and the entities.
The class diagram below (Figure 3) shows inheritance links and reference
links6 which can be either “construction ” or “relation” links.

EndPoint

MidPoint

ExtensionPoint

NearestPoint

CenterPoint

QuadrantPoint

NodalPoint

InsertionPoint

E_ConstrainedPoint

IntersectionPoint

ApparentIntersectionPoint

EE_ConstrainedPoint

ParallelPoint

TangentPoint

PerpendicularPoint

EP_ConstrainedPoint

Point

ConstrainedLine

AcDbLine

ConstrainedCircle

AcDbCircle

ConstrainedArc

AcDbArc

AcDbEntity

AcDbObject

start, end
center

center, start, end

sourceEntity

sourcePoint

source1, source2source

Reference link

Custom class

Standard class

Inheritance link

Figure 3. Model class diagram

6 In fact, the reference links are bi-directional. For simplification purposes, we have
only represented the dependency direction.

IMPLICIT HANDLING OF GEOMETRIC RELATIONS 5

All theses classes derive from AcDbObject class so they are database-
resident. Constrained entities need to derive from AcDbEntity. This is not
the case of the Point class which has no graphic representation.

4.1.1. Points
The Point class is the base class for all free and constrained points.
According to the type and number of its source objects, a constrained point
derives from one of the following abstract classes:
− E_ConstrainedPoint: depends on a single entity (e.g. Center),
− EE_ConstrainedPoint: depends on two entities (e.g. Intersection),
− EP_ConstrainedPoint: depends on an entity and a point (e.g. Tangent).
These classes are then specialized into snap-mode-dependent point classes:
CenterPoint, IntersectionPoint, PerpendicularPoint, etc.

4.1.2. Entities
Target entities are instances of custom classes (ConstrainedLine,
ConstrainedCircle, etc.) which provide the functionality to react to point
changes and update their own geometry. These classes are derived from
built-in geometric classes (AcDbLine, AcDbCircle, etc.).
On the other hand, source entities are instances of standard classes so that
any native entity can be the support of a geometric relation.

4.2. RELATIONAL GRAPH

Using the previous classes, the system builds a relational directed7 graph
(Figure 4). This graph is acyclic since it is based on the construction history.
However, cycles could be introduced if the system allows an a posteriori
relation-setting on existing points (which is not currently the case).

A

B

C

E
F

D

midpoint

perpendicular
endpoint A : Point

B : Point

AB : ConstrainedLine

C : MidPoint

D : Point

CD : ConstrainedLine

E : EndPoint

F : PerpendicularPoint

EF : ConstrainedLine

Figure 4. A drawing and its relational graph

7 The direction of this graph follows the sense of creation and propagation.

6 S. BELBLIDIA AND E. ALBY

4.3. MODIFICATION MANAGEMENT

When the end-user interactively requests an operation on a set of entities,
the transformation only applies to the subset of free points which constitute
these entities. From these points, a top-down traversal of the relational graph
starts, following alternatively a construction link and a relation link.

This update process is more a data propagation than a solving procedure.
It does not generate conflicts simply because each point is defined in a
unique way, without redundancy.

5. Implementation

The first prototype of this system has been implemented using Object ARX,
the AutoCAD object-oriented SDK (Autodesk, 1999). The following are
some of the capabilities that were useful to this development.

5.1. CLASS SPECIALIZATION

When deriving a custom class from a standard one, most properties and
methods concerning entity display, transformation and filing are inherited
(unless overloaded) and new ones can be added.

For example, the class ConstrainedLine is a kind of AcDbLine. It has the
same graphic characteristics but it also reacts to the changes that affect its
start and end Points, checks if the modified point is free in which case it
allows the operation and updates its own geometry.

5.2. EVENT NOTIFICATION

When an event occurs in the system, certain objects, called notifiers,
automatically relay the event to other objects called reactors. This
notification mechanism applies to various events related to a given object, to
the database or to the graphic interface.

Database objects can be notifiers as well as reactors. In our case, a
constrained point is the reactor of the entity it depends on (relation link) as
well as the notifier of the entity it belongs to (construction link).

5.3. POINT MONITORING

This built-in notification mechanism is intended to relay the information
relative to point acquisition. This work is achieved by a specific reactor
called an “input point monitor”.

IMPLICIT HANDLING OF GEOMETRIC RELATIONS 7

In this application, a custom input point monitor provides, for each point
designation, the information required to add a relation: the snap mode used,
the final computed point and the entities responsible for its location.

6. Discussion

The current prototype works with constrained lines only. We project to
extend it to support other geometric types like arcs and circles. For some of
these types, derived classes must take into account the construction method.
For example, the abstract class ConstrainedCircle will have derived classes
such as CenterRadiusCircle, CenterPointCircle, ThreePointsCircle, etc.

In addition, one of the objectives of this work is to deduct the geometric
relations only from the interactive use of snap modes so the model is mainly
based on the points. In a previous work (Alby, 2002), we have considered a
data model which also relies on the angles and the distances, which values
can be extracted from existing objects. The introduction of these new basic
items allows to meet most of the modeling needs. However, their usage
might be less intuitive since it is not directly supported by the modeler
interface.

One other issue is the management of cycles in the relational graph.
When dragging an existing point on an object snap point, the user makes
this point depend on the object8. Therefore, a cycle can appear if this object
was created after the point and indirectly depends on it. The propagation
process can produce a result even with cycles but it requires to handle
tolerance values. The cycles can also be detected beforehand and locally
solved using numeric methods (Mathis, 1997) but we have not yet
investigated this possibility.

References

Alby, E.: 2002, Assistance à la modification d'un dessin par mise en contrainte implicite,
Master report, School of Architecture, Nancy.

Autodesk Inc.: 1999, ObjectARX developer’s guide, online documentation.
Kolarevic, B.: 1997, Regulating Lines, Geometric Relations, and Shape Delineation in

Design, Proceedings of the 15th eCAADe Conference, Vienna, 17-20 September 1997.
Martini, K.: 1995, Hierarchical geometric constraints for building design, Computer-Aided

Design, 27(3), pp. 181-191.
Mathis P.: 1997, Constructions géométriques sous contraintes en modélisation à base

topologique. PhD Thesis, Louis Pasteur University, Strasbourg, pp 5-34.
Medjdoub, B.: 1999, Interactive 2D Constraint-Based Geometric Construction System,

Proceedings of the 8th CAAD Futures Conference, Atlanta, 7-8 June 1999, pp. 197-212.

8 This function is not supported yet.

8 S. BELBLIDIA AND E. ALBY

Monedero, J.: 2000, Parametric design: a review and some experiences, Automation in
Construction 9(4), pp. 369-377.

	Introduction
	Related works and tools
	Implicit setting of geometric relations
	Creation and management of a relational graph
	DATA MODEL
	Points
	Entities

	RELATIONAL GRAPH
	MODIFICATION MANAGEMENT

	Implementation
	CLASS SPECIALIZATION
	EVENT NOTIFICATION
	POINT MONITORING

	Discussion
	References

