
DDSS 98 1

Cooperation models in co-design : application to architectural design.

G. Halin*, K. Benali**, J.C. Bignon*, C.Godart**,

* CRAI
Ecole d’Architecture de Nancy, 2 rue Bastien Lepage. 54000 Nancy, France.
Tel: (33) 3 83 30 81 46. Fax: (33) 3 83 30 81 27. Email: halin@crai.archi.fr

** LORIA
Campus Scientifique BP 239, 54506 Vandœuvre-les-Nancy, Cedex, France.

Tel: (33) 3 83 59 20 00. Fax: (33) 3 83 30 81 27.
E mail: godart@lorraine.loria.fr

ABSTRACT

This paper focuses on cooperation concepts necessary for managing concurrent engineering. It reports
on a research work being done in a project which establishes a connection between computer sciences,
architecture and telecommunications research1. Simple electronic cooperation paradigms (also called
generic cooperation bricks) are found by analysing the current usage of human cooperation in the
domain of AEC design environments. We introduce the principles of a middleware to build easily
cooperative applications to assist cooperative design. In this approach, the design actors choose
cooperation forms by instancing adapted generic cooperation bricks.

1 INTRODUCTION

This paper reports on a research work being done in a project which establishes a
connection between computer sciences, architecture and telecommunications
research1. It focuses on cooperation concepts necessary for managing concurrent
engineering. This topic is present in every large building project and especially in
design phase. Concurrent engineering and management of activities dispatched over a
network are currently of high interest (Julien 1995) (Pawar et al. 1995). Numerous
research projects are starting or restarting in conjunction with the evolution of
hardware and software frameworks.

The impact of PC’s architecture and Internet allows geographically distributed
partners to communicate through simple interfaces. For the moment, these
communications and exchanges are directed by two forms : point to point with very
simple exchanges (mailing and file), or centralised where each exchange is planned
and must be controlled. Our approach is located between these two forms. Indeed we

1 This project is supported by the CNET France.

DDSS 98 2

think that electronic communication does not have to change the actor habits
fundamentally as it brings a significant profit or advantage which compensates this
habit modification. Then, the cooperation model proposed here should be nearest
from the current usage or should be the usage expected which is never put into
practice.

The analysis of current usage in the domain of AEC design reveals that the
cooperation is often short-lived and organised between firms of different sizes and
with different organisations. From this analysis, we find out simple cooperation
paradigms (we call them generic cooperation bricks) and we introduce the principles
of a middleware to build cooperative applications. Then, a cooperative application is a
combination of bricks of cooperation which are themselves instances of generic
cooperation bricks. This form of cooperative applications must be safe but also easy
to use for each actor.

2 ANALYSIS OF CURRENT USAGE

2.1 General scope

The AEC domain has many big enterprises but its major activity is done by small
enterprises. Typically, the construction of a building is the result of cooperation
between numerous and different actors (architects, structural engineers, mechanical
engineers,...) who create and use a temporary relational system which is commonly
called « Virtual Enterprise ». This kind of collaboration is in contrast to the one
existing in the manufacturing industry which is strongly integrator with permanent
relations between actors. This specific character gives the AEC actors a very older
expertise of these cooperative practices. Paradoxically, it puts a break on the
development of communication tools for EDI (Electronic Data Interchange). The
usage of actor communication is anchored in the practice. The problems are often
solved during oral discussion on building site. An electronic communication does not
have to change this form of collaborative work, it has to be adapted to this form and
propose simple protocols of exchange.

A first level of collaboration concerns data exchange. Many projects (Björk 1995)
(Tonarelli et al. 1997) (Junge and Liebich 1997) propose a product data model which
contains all information needed during the building life cycle. A great effort is done
by the IAI (International Alliance of Interoperability) which proposes the IFCs
(Industry Foundation Classes) with a bottom up and incremental approach (IAI 1996).
The intention of the IAI is to define a specification of all the objects (IFC) that could
appear in a building project. Parallel to these projects, stands the STEP project (STEP
1994) with the objective to build a broad standardisation of product data exchanges.
The STEP project uses a top down approach and will soon integrate the IFCs in its
model proposition.

DDSS 98 3

This first level must produce CAD applications which will be able to communicate
standard product information. This is important to realise the second level of
collaboration where the cooperative work is done in the framework of a Virtual
Enterprise.

At the moment, this second level is dominated by two forms of collaboration :
- the first form is a simple data exchange with floppy disk or electronic mail.
This approach is close to the current usage of plan and administrative document
exchanges between actors,
- the second form is the centralised approach which is only effective in
important projects. This form of collaborative work, which is either called « cell
of synthesis » or « electronic store of plans», is expensive for small enterprises.
Indeed, it requires specific equipments and specific human investments. The
most important disadvantage of such approach is that it changes actor habits
while adding new actors for control exchange. Thus, this current form of
centralised collaboration is not adapted for medium or small building projects.

Between these two forms of collaboration, the new computer technologies, as
Internet, CORBA (OMG 1995) and JAVA (Atkinson M.P. et al. 1996), allow to
envisage a new approach of cooperative work where design activities are distributed
on a network. This new form of collaboration can be viewed with different scenarii
depending on the project size. The VEGA Esprit project (Junge R. 1997) tries to
represent the entire workflow process which will be able to control the project
coherence during the actors’ distributed activities. This approach is adapted for
projects with an important investment.

Our approach considers a project as a set of specific collaborations which can be used
according to needs encountered during the design process. These short time
collaborations are the components of what we call a « Project Enterprise ».

For example, instead of waiting the end of a specific design task to transmit the result
to a co-designer, it seems more interesting to provide a working copy of the design to
allow him to react and enhance the design in progress.

The general objective of our study is to find cooperative behaviours in the current
usage of collaboration, in order to specify generic bricks of cooperation and realise
cooperation tools which will be well-received and used by the AEC actors. This study
will consider more specifically collaborations in small or medium projects.

2.2 Case Study

To illustrate our approach, we reuse the example developed in (Rosenman and Gero
1996). It consists in designing a one-storey apartment containing a living room with a
glass wall. Three kind of designers cooperate to achieve this work: the architect

DDSS 98 4

providing spatial organisation, the structural engineer in charge of building stability,
and the HVAC engineer responsible of the thermal behaviour of the apartment. These
activitites are done with a sequential workflow management.

The architect’s activity is to design and represent the apartment spatial organisation
with walls, windows,... Such a representation may lead to the plan of figure 1. This
graphical representation only takes care of volumes, spaces and luminosity of the
apartment. We limit this example to the living room.

Partition
OpeningOpening Partition

Floor

Roof

Figure 1 : Apartment spatial organisation.

The design activity of the architect can also be formalised by a schedule which
organises a sequence of operations (see figure 2). This activity is called A0. The
architect operations are noted :
• plan0 = edit() when the architect creates a new plan,
• plan0 = edit(plan0) when the architect updates the plan,
• write (plan,plan0) when the architect provides the plan to the other activities by

storing it in the drawing archive storage.

In the example below (cf. figure 2), the architect constructs his plan in three times
before storing it.

A0: Produce plan
plan0=edit()

plan0=edit(plan0)
plan0=edit(plan0)
write(plan,plan0)

Figure 2 : Architect’s activity.

DDSS 98 5

The structural engineer activity consists in specifying the structural elements of the
apartment. Such elements (cross walls , beams,...) will be chosen to respect, as far as
possible, the choices made by the architect and the overall harmony of the building.
Such an activity can lead to the modified plan depicted in figure 3. In this new plan,
the structural elements corresponding to the architect plan are highlighted: cross walls
chosen among architect separation walls, "transforming" floor and roof into
structurally specified slabs. And new structural elements are added to the plan:
addition of a beam which has its structural specification defined. This description only
takes care of structural aspects of the apartment.

Roof slab

Floor slab

Cross
wall

Cross
wall

Dropped
girder

Opening

Opening

Figure 3 : Apartment with structural elements.

The results of the structural engineer design can be formalised as in figure 4. A1 is the
activity of the structural engineer. His operations are noted :
• plan1 <- read(plan) when the structural engineer retrieves the plan from the

drawing archive storage,
• plan1 = edit(plan1) when the structural engineer updates the plan,
• write (plan,plan1) when the structural engineer provides the plan to the other

activities by storing it in the drawing archive storage.

In the example below (cf. figure 4), the structural engineer adds structural elements to
the plan in two times before storing it in the drawing archive storage.

A1: Produce plan with structures
plan1 ← read(plan
plan1=edit(plan1)
plan1=edit(plan1)

write(plan,plan1)}

Figure 4 Structural engineer’s activity.

DDSS 98 6

At the end of the structural engineer work, the architect retrieves the plan for
controlling that modifications respect the overall consistency of the project. In
particular, the addition of the beam will cause modification to the storey height.
According to this new situation, the architect may decide to modify the size of the
glass wall (or eventually to move it). Another element to take into account is the new
thickness of cross walls which may differ from the separation wall initial thickness.
The architect makes a synthesis of his vision and of the structural engineer's one to
produce a complete plan including structural elements. He does it in one step as
shown in figure 5. The new plan is depicted in figure 6.

A0: Produce new plan with
structures

plan0← re-read(plan)
plan0=edit(plan0)
write(plan,plan0)

Figure 5 : Architect synthesis activity.

Roof slab

Floor slab

Interior
wall

Exterior
wall

Dropped
girder

Opening

Large
window

Figure 6 : Apartment after architect synthesis activity.

Finally, to achieve architectural design, the HVAC engineer will intervene to change
the glass wall according to the climate and the apartment exposure. This choice will
be guided by various considerations issued from the plan of figure 7. His activity can
be summarised as in figure 8.

DDSS 98 7

Roof slab

Exterior
wall

Dropped
girder

Exterior
opening

Interior
wall

Non isolated
floor slab

Interior
opening

Figure 7 : Apartment after the HVAC engineer’s activity.

A2: Produce specification of the wall
glass

plan2← read(plan)
wallglass2=edit()

write(wallglass,wallglass2)

Figure 8 : HVAC engineer’s activity.

3 SUPPORTING COOPERATION.

3.1 Generic bricks of cooperation.

In the example developed above, we presented the activities of the various actors as
executed in sequence, each actor storing in the drawing archive storage a finished
work, and each actor waiting until the end of another actor work. In this section, we
show how these actors can take advantage of interactions during their individual
work. That is well known, but our contribution is to show how we can formalise this
cooperation and develop specific softwares to support it (Benali et al. 1998).

3.1.1 The Client/Server paradigm

With the organisation described above, the HVAC engineer does nothing before
having obtained the definitive plan with structural informations and the modified wall
glass. Nevertheless, even if the final result of the HVAC engineer has to consider the
final plan with structural informations, the HVAC engineer is able to start his work on
the initial architect's plan. Effectively, this plan already has a wall glass, and thermal
work can start on this basis. The apartment exposure and the huge size of the wall
glass provide elements to start work. This kind of cooperation corresponds to a

DDSS 98 8

paradigm of cooperation which is often repeated. We call it the Client/Server
paradigm. In this paradigm, one actor (the client) can work on preliminary versions
produced by another actor (the server). The only compulsory rules are : the server
must produce the final version of each object it has produced in a preliminary version,
and the client take in account at least the last version produced by the server. This
paradigm allows some cooperative work which enhances productivity and allows to
start HVAC engineer activity A2 before the end of architect activity A1. To implement
this paradigm, the architect has to store in the drawing archive storage, different
preliminary versions of his plan. Figure 9 presents an example of such a cooperation.
between the architect and the HVAC engineer.

A0: Produce plan A2: Produce specification of the wall glass
plan0=edit()

plan0=edit(plan0)
write (plan,plan0)

plan2← read(plan)
plan0=edit(plan0) wallglass2=edit()
write (plan,plan0)

plan2← read(plan)
write(wallglass,wallglass2)

Figure 9 : Architect and HVAC engineer cooperative work.

In the example above, the architect is the only one who updates the plan; the HVAC
engineer does only read the plan for producing another objet (the wall glass
specification).

3.1.2 The Cooperative Write paradigm

The collaborative process between the architect and the structural engineer
corresponds to another kind of cooperation. In fact, both of them update the plan. We
developed the example in a sequential way : at one step only one actor updates the
plan. The architect creates the plan, then the structural engineer adds informations,
and finally the architect synthesises the work and produces the final plan. This kind of
work organisation does not allow to take profit from possible synergy between two
actors really cooperating. This is not the better way to do things : it is perfectly
possible to allow real cooperation between the two actors from the beginning of the
plan elaboration. The structural engineer can start his activity as soon as possible and
then provide the architect a more accurate vision of the actual volumes of the plan
final version. To do that, the two actors must be allowed to write at the « same time »
a common plan.

In our example, the height of the wall glass is imposed by the structural engineer.
Cooperative work would allow these two actors to agree more quickly on a common
view. We have pointed out this behaviour as being really common : it defines what we

DDSS 98 9

call the cooperative write paradigm in which two actors modify at the same time the
same object. They have to follow some rules : to be aware of each other work and to
converge towards a same view of this object. Figure 10 depicts a schedule of such a
cooperation.

A0: Produce plan A1: Produce plan
plan0=edit()

plan0=edit(plan0)
write(plan,plan0)

plan1←read (plan)
plan0=edit(plan0)
write(plan,plan0)

plan1 ← re-
read(plan)

plan0=edit(plan0) plan1=edit(plan1)
write(plan,plan1)

plan0' ← re-read(plan)
plan0=merge(plan0,plan0')

write(plan,plan0)
write(plan,plan0)

plan1 ← re-
read(plan)

Figure 10 : Architect and structural engineer cooperative writing.

At this point, we have introduced two modes of cooperation. In the first one, an actor
uses the plan produced by another to design the object wall glass for which he is
responsible (client/server paradigm). In the second, the two actors cooperate to
produce one object (one plan). Lets us now consider a third one called
writer/reviewer.

3.1.3 The writer/reviewer paradigm.

This third form of cooperation corresponds to the case in which an actor produces an
object under the control of another. As an example, an architect may be controlled by
a town planner which gives advices in return and which validates the final plan. In
this mode of cooperation, the writer produces different successive versions of the
object it has to produce, especially to take into account the review of the town
planner. This review has for objective to impose the architect to respect some rules.
As example, he can react on the first version of the plan and ask for the surface of the
wall glass to be reduced or the type of the woodwork to be changed. On a following
version, he can react on the global look of the building. We say that the interactions
between the architect and the town planner follow the writer/reviewer paradigm. The
writer is the architect, the reviewer is the town planner. This mode of cooperation is
illustrated in figure 11.

DDSS 98 10

At this point, we have introduced the different paradigms of cooperation and we have
illustrated them through examples. These examples have the peculiarity that they
depict schedules in which things run well (the interactions between partners follow
the cooperation protocol). The activities will be validated and their modifications will
impact the object base (or the drawing archive storage in other terms). But what we
want to underline now is that the interest of our approach consists in preventing actors
from violating the process of cooperation: rules about object sharing prevent an actor
to terminate its work if the current state of this work violates a rule of the current
process .

A0: Produce plan A1: Write report
plan0=edit()

write(plan,plan0)
plan0=edit(plan0) plan1← read(plan)

rep1=edit()
write(rep,rep1)

rep0← read(rep)
plan0=edit(plan0)
write(plan,plan0)

plan1← re-read(plan)
rep1=edit(rep1)
write(rep,rep1)

rep0← re-read(rep)

Figure 11 : Writer/Reviewer.

This achitecture of collaboration between the project actors is resumed in the
figure 12.

Architect

Structural
engineer

Urban
Planner

HVAC
engineer

writer/
reviewer

Client/
Server

Cooperative
write

planplan

plan

advice

Figure 12 : Cooperation architecture.

DDSS 98 11

3.2 Combining cooperation bricks.

3.2.1 The problem

In the previous section, we have individually studied different cooperation paradigms.
In a real cooperative application, different instances of the same paradigm, applied to
differents objects and/or different activities, and different instances of different
paradigms, live together. Each instance defines a brick of cooperation and a
cooperative process is built by combining several bricks. With this view of things, the
idea of a generic brick corresponds to this of cooperation paradigm as defined before.
The problem we address in this section is: how to define a cooperation brick and how
to combine these bricks ?

This problem is quite complex. In the writer/reviewer scheme, a designer allows a
partner to have knowledge of an object being elaborated (before it is stabilised). This
allows the second to react quickly and to enrich the current design. Generally, such
exchanges repeat and define a cross fertilisation loop. The control of such a loop is
not so easy. In the cooperative write scheme, two partners work at the same time on
the same object; we can easily imagine the synchronisation problem that this implies.
And now, suppose that an object written in such a cooperative write participates to a
writer/reviewer scheme with a third partner !

The question is how to control these flows of information to ensure consistency of the
results in a way as much as possible transparent to the professionals in front of their
screen ? We have considered that our problem can be compared in some ways to the
problem of concurrency control in database, when several activities access the same
object of the database at the same time, either to read it or to write it.

3.2.2 A Transactional Approach

To support the concurrency control in traditional applications, database systems
implement the concept of a transaction. A transaction is an execution of a program
segment that performs some functions or activities by accessing and manipulating a
shared database. Deposit, withdrawal, and transfer of money are typical examples of
business transactions whereas automative engine design or the debugging of a
software are examples of CAD/CASE transactions.

A transaction model assumes that if each activity works correctly individually and if
each such correct activity is encapsulated in a transaction, the parallel execution of a
set of concurrent activities is also correct. In other words, if each activity takes the
database from one consistent state to another, the parallel execution of a set of such
activities encapsulated in transactions takes also the database from one consistent
state to another. To assert correctness, a transaction model implements a
synchronisation protocol which imposes rules to activities on the intertwining of their
read and write operations. Such a protocol makes references to a correctness criteria.

DDSS 98 12

The interest of this approach is that it requests no, or rather few, programming
specific to the problem of interactions between activities.

Typically, the more popular protocol is the Two Phases Locking which refers to the
Serializability criteria (a parallel execution of a set of activities is correct if it is
equivalent to a serial execution of these activities) (Bernstein P.A. et al. 1987). This
protocol is well adapted for traditional business processes but not for CAD
applications. And this is the case for most traditional protocols developed for
traditional database applications. However, during the last decade important advances
have been made in concurrency control and transaction processing, especially to
manage new characteristics of the new applications: long duration, interacting,
cooperative, ... (Elmagarmid A. K. et al. 1992) Our approach contributes to these
advances.

Broadly speaking, the main idea developed in the new techniques is to exploit
semantics of data items and operations defined on them, the behavioural properties of
the activities in the database, and the correctness requirements of applications to
surpass the limits of serializability. These new techniques are referred as semantics-
based transaction processing techniques. They can be classified in two sub-
approaches:
• the first consists in founding by default the correctness on serializability, but to

relax it when requested by taking into account some knowledge on the activities
being synchronised,

• the second consists in defining new correctness criteria which are more related to
new application requirements and new protocols which enforce these new criteria.

Our approach enters in the second scheme: especially, we have defined a new
correctness criterion which defines a large sphere of security in which activities can
cooperate in the sense of the three cooperation paradigms defined above. Then
semantics of the application can be used to restrict the possibilities of cooperation.

3.2.3 Our protocol to support cooperation

To execute, any activity is encapsulated in a long term transaction. When executing,
an activity can publish at any time intermediate results, which are potentially
inconsistent and non stable (by finition). Publishing intermediate results is the main
way to cooperate in our environment. Applied to our illustrative example, we have a
first transaction for the architect, a second for the structural engineer and a third for
the HVAC engineer. The preliminary versions of plans are the intermediate results.

The following set of nine rules define our protocol (called the COO protocol)
(Molli P. 1997). The first set of four rules is sufficient to synchronise one individual
client/serve brick. The last five rules are requested to synchronise cooperative write
and writer/reviewer bricks.

DDSS 98 13

1. A result produced before the end of a transaction is an intermediate result. A user
can produce at any time an intermediate result.

2. A result produced at the end of a transaction is a final result. If a transaction
produces an intermediate result, then it must produce the corresponding final
result. A transaction keeps track of all the intermediate results it has produced and
produces automatically the corresponding final results during its termination phase.

3. If a transaction reads an intermediate result of another transaction, then it must
read the corresponding final result. If a transaction reads an intermediate result of
an object produced by another transaction, then a dependency is created between
the two transactions. This dependency is removed when the depending transaction
reads the final value of the corresponding object.

4. If a transaction tries to terminate and at least one dependency exists between itself
and another transaction, the transaction cannot terminate.

5. The transactions which are implicated in a cycle of dependencies define a group of
transactions and must terminate simultaneously. This is especially the case of two
transactions which cooperate in a cooperative write brick or in a writer/reviewer
brick.

6. A transaction starts a group termination by trying to terminate itself. By this
action, it produces a set of potentially final results and becomes « ready to
terminate ».

7. If another transaction of the same group tries to commit and all others transactions
of the group are in a «ready to terminate » state, then all transactions of the group
terminate simultaneously.

8. If another transaction of the same group tries to terminate and all others
transactions of the group are not in the « ready to terminate » state, then it
completes the set of potentially final results and becomes « ready to terminate ».

9. If a transaction of a group produces a new intermediate result, then the group
termination tentative is aborted and all transactions of the group become again
« active ». This is the way for a transaction to show its disagreement with the
potentially new state of the shared objects.

4 IMPLEMENTATION

A first version of this protocol has been implemented on top of an object oriented
database management system called P-ROOT (Godart C. et al. 1996). A second
version is being developed in JAVA (Atkinson M.P. et al. 1996) with the objective to
respect two main constraints :

1. the environment must support cooperation without changing the habits of
designers. Especially, they must continue to work with their tools and their usages,

2. it must run on a simple computer infrastructure, typically a network of personal
computers.

DDSS 98 14

AEC applications will be used to validate the prototype: the project in which the
prototype is being developed implicates researchers of three different domains:
computer sciences, architecture and telecommunications.

5 CONCLUSION

This paper has formalised some principles of cooperation, taking advantages of the
experience developed in several studies about co-design, and especially in the domain
of AEC design.

Our cooperation model is based on three simple generic bricks that we are able to
instanciate and to combine in a safe way. If this set of basic generic bricks seem
small, we have experimented that it responds to a large set of cooperation cases and
appears to be very useful. However, one important objective of our current work is to
find out new basic generic bricks of cooperation and to integrate them in a theorical
model. This theorical model must allow the development of software which should be
easy to use by professionals.

6 REFERENCES

Atkinson, M.P. Jordan, M.J. Daynés, L. Spence, S. (1996) Design issues for
persistent Java : a type-safe, object-oriented, orthogonally persistent system. In POS-
7, 1996.

Benali, K. Munier, M. Godart, C. Cooperation models in co-design. In: International
Conference on Agile Manufactoring. Minneapolis, june 1998.

Bernstein, P.A. Hadzilacos, V. Goodman N. (1987) Concurrency control and
recovery in database systems. Addison-Wesly, 1987.

Björk, B.C. (1995) Requirements and information structures for building product data
models, Espoo : Technical Research Center of Finland (VTT), 1995 , 163 p. VTT
Publication n°245.

Elmagarmid A.K. et al. (1992) Database transaction models for advanced
applications. Morgan Kauffman, 1992.

Godart, C. et al. (1996) Designing and implementing COO. In International
Conference on Software Process (ICSE18). IEEE Press, 1996.

IAI (1996) End User Guide to Industry Foundation Classes, International Alliance of
Interoperability, 1996.

DDSS 98 15

Julien, P.A. (1995) « Wide-Entreprise » : contraints et opportunities, Proceedings of
Concurrent Engineering & Technical Information Processing, ILCE'95, Paris,
January 1995, pp 27-38.

Junge, R. Köthe, M. Schulz, K. Zarli, A. Bakkeren, W. (1997) The VEGA platform.
IT for the Virtual Enterprise, Proceedings of CAAD Futures, 1997 , pp 591-616.

Junge, R. Liebich, T. (1997) Product data model for interoperability in an distributed
environment, Proceedings of CAAD Futures, 1997 , pp 571-589.

Molli, P. (1997) COO transactions: enhancing long transaction model with
cooperation. In 7th Software Configuration Management Workshop (SCM7), LNCS,
1997.

Object Management Group (1995) CORBA Sevices : Common Object Services
Specification. Revised Edition, 95-3-31, 1995.

Paward, K.S. Thoben, K.D. and Oehlmann R. (1995) A Holistic infrastructure for the
guided implementation of concurrent engineering principles. Proceedings of
Concurrent Engineering & Technical Information Processing, ILCE'95, Paris,
January 1995, pp 51-62.

Rosenman, M.A. Gero, J.S. (1996) Modelling multiple views of design objects in a
collaborative CAD environment. Computer-Aided Design, 28(3), pp193--205, 1996.

STEP (1994) Overview and Fundamental Principles, ISO-10303, part 1,1994.

Tonarelli, P. Ferriès, B. Delaporte, J.L. Tahon, C.(1997) Proposal of a product model
for the buildong trade, Automation in Construction, vol 5, pp 501-520.

